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INTRODUCTION

In the last few decades, nonlinear optics has taken a central role in many

applications based on four-wave mixing and an intensity-dependent refractive index.

Two of the most intriguing questions posed in the last few years are: I) what role.

if any, solitons will play in optics, and 2) whether sub-picosecond all-optical signal

processing based on guided waves will be possible. Solutions to the nonlinear wave

equation for media containing Kerr-law nonlinearities were known for a number of

years prior to the start of this program. However, only recently, with this research

program playing a leading role. have numerical investigations revealed the full

richness of the phenomena involved. Power-dependent waves guided by the interface

between two media (at least one of which has a self-focusing nonlinearity; i.e., index

increases with power) were studied initially. It was soon realized however, that a

thin film bounded by media of lower index (at low guided-wave powers) is the

optimum geometry, since it also supports guided waves at low powers, commonly

known as integrated-optics waveguides. Waveguides are ideal for efficient nonlinear

interactions because they confine light to beam cross-sections on the order of the

wavelength of light. Consequently, much of our work has concentrated on thin-film

waveguides.

Three years ago this program to investigate nonlinear surface polariton

phenomena was begun, in collaboration with A. A. Maradudin and R. F. Wallis at

the University of California at Irvine. In the last eighteen months, most specifically

with the arrival of E. M. Wright (recently promoted to Research Assistant Professor),

an independent theory program has been developed at the University of Arizona.

Simultaneously, both the fundamental and device-related aspects of nonlinear guided-

wave interactions were under experimental investigation.

REVIEW OF ACCOMPLISHMENTS

Background

The theoretical program has led to a number of significant advances in the

understanding of nonlinear guided-wave phenomena and has identified a number of

potential applications to all-optical devices. The results have been reported in a

series of publications," -' and led to a number of invited papers 2 -
1
2 concerning both

experiment and theory.
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The geometry examined most frequently consists of a thin film (of refractive

index nf) bounded by a nonlinear cladding (n - nc + n2,S) and/or a nonlinear

substrate (n - n. + n2,S). where S is the local intensity. For TE waves polarized in

the y direction. Maxwell's equations lead to the following mixed linear-nonlinear

Schrodinger equation governing the evolution of the complex electric field:

1 + 2i k - k'[ ft - n2(x,S) ] E - 0

Here z and x are the propagation and transverse coordinates, and 0 is an appropriate

background effective index. This equation admits nonlinear guided-wave solutions of

the form
-- i kO(Pgw] z

E(x.z) - E,(x.PW)e[P

where, in general, both the guided-wave effective index and the field profile depend

on the guided-wave power, P.,. It is usually the variation in P and E,(x) with

guided-wave power which leads to unusual and potentially useful properties of the

guided waves. This program has primarily used two approaches to solve these

equations for a variety of multilayer geometries. Steady-state solutions are obtained

when aE/az - 0. Beam propagation methods are particularly valuable for

investigating cases where aE/az # 0.

Results

The following phenomena, based on steady-state solutions to the nonlinear wave

equation, have been demonstrated theoretically. Ideal Kerr-law nonlinearities in the

media bounding the film were assumed.

(1) For self-focusing media and under well-defined conditions, there is a threshold

power above which guiding occurs. This leads to an all-optical lower threshold

device. 1-s. si56,20

(2) For self-defocusing media, there is an upper limit to the power guided. This is

essentially an optical limiter.-,." ,16 ,20

The combination of these two effects could lead to an all-optical Schmitt trigger,

a key component in any all-optical system.

(3) Saturation effects have been included in the steady-state solutions and the effect

on various nonlinear guided waves clarified. In particular, it was shown that a

2
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value for the saturation index which is too small eliminates thresholding action

for (1) and (2) above. 6-7,2 1 1
, '1 .16.20

This result identifies a material limitation on the operation of all-optical devices.

In addition, numerical beam propagation methods (BPM) have been developed in

collaboration with J. V. Moloney of Heriot-Watt University and the following results

obtained.

(4) Not all of the nonlinear guided-wave branches for self-focusing bounding media

are stable. Unstable solutions emit spatial solitons into the bounding media as

they evolve into stable solutions."-13
,1

6
,
20

(5) Nonstationary. stable solutions to the nonlinear wave equation in which the field

distributions remain guided and oscillate with distance were discovered,1
113,'6,

1 8 -2 0

(6) Stable waves can be excited by focusing appropriately tailored Gaussian beams

onto the endface of a nonlinear waveguide. If the power is too high, the excess

power leaves the film region by means of successive emission of solitons, thus

limiting the power guided in the region of the film.'8 -21 '

(7) Absorption leads to interesting overshoot phenomena for soliton-like wave.. In

the limit of weak absorption, soliton propagation still occurs.22

N (8) Until recently, all of the progress by this group and others in the field has been

for TE-polarized vaves. The TM case was generally believed to be intractable,

however, analytical formulae for the TM dispersion curves have been obtained

for the first time. Also. in collaboration with A. D. Boardman's group, purely

numerical techniques were applied to the solution of the TM problem.'7 , ,-1

(9) Solving the TM problem allowed consideration of weak-strong beam combinations

for combination TE- and TM-polarized waves. It has been shown that 100%

modulation of one beam by a weak modulation of the second beam is

possible.2 .28

(10) There is a long-standing controversy about whether bistability can be obtained

when light is prism-coupled into a nonlinear waveguide. It was showr,

numerically that bistability can be obtained only with non-local nonlinearities. or

with reflections at the prism end. Purely local nonlinearities lead only to

switching."

3
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This explains the observation of bistability for thermal nonlinearities in a number

of experiments by this group and others.

(11) One of the potentially most versatile all-optical guided-wave devices is the

nonlinear directional coupler. The steady-state response of this device has been

solved. A number of totally unexpected steady-state power distributions between

the two channels were found."'
l[

Conclusion

In terms of applications, the above results identify which branches of the new

solutions can actually be used to propagate guided-wave power. The common

occurence of spatial solitons in these nonlinear systems begs the question of whether

new device concepts based on the exchange of solitons are possible. Research is

continuing in this area.
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